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thesized compounds available to learn 
from is often a tiny fraction of this total 
allowed space and this “needle in a hay-
stack” problem requires efficient means 
of sampling the space to hone in rap-
idly on regions of potential interest.[1–3] 
We have customarily used our intui-
tion and physics-based understanding to 
guide the search for materials with better 
response.[4,5] For example, the suscepti-
bility of a material can be significantly 
enhanced in the proximity to a phase 
transition region because the instabilities 
in the order parameters are most acute 
there.[6,7] However, this kind of search is 
still limited especially in complex systems 
because of the large search space associ-
ated with varying chemistry, processing 
conditions and microstructures, as well as 
the resultant size of the search space.

There has recently been much interest 
in employing machine learning (ML) and 
optimization methods to guide experi-
mental synthesis to find materials with 

targeted properties.[8–18] The state-of-art in this field is to use 
an iterative approach, which is largely data-driven, starting 
from a set of features or material descriptors based on mate-
rial knowledge to construct a surrogate model learned from 
data.[19,20] Ideas and methods from decision theory and 
experimental design then provide the means to make optimal 
decisions of the experiments or materials to test next.[19–22] 
The strategy has been quite successful in finding alloys and 
ceramics with enhanced properties.[11–14,23,24] Even though 
Bayesian based algorithms using utility functions, such as 
expected improvement to maximize or minimize the objec-
tive or property, have proved especially successful in finding 
compounds with desired properties, the search space is often 
too large and leads to excessive exploration. This is a reflec-
tion of a multidimensional search space, and what is needed 
is to isolate regions in this space containing a relatively large 
number of extrema so that the probability of finding a com-
pound with the desired targeted response is much higher 
than in the original search space. The physics based under-
standing of the problem can certainly help by effectively nar-
rowing down the search space. To this end, we compare two 
machine learning based strategies using varying levels of 

The problem that is considered is that of maximizing the energy storage 
density of Pb-free BaTiO3-based dielectrics at low electric fields. It is 
demonstrated that how varying the size of the combinatorial search space 
influences the efficiency of material discovery by comparing the performance 
of two machine learning based approaches where different levels of physical 
insights are involved. It is started with physics intuition to provide guiding 
principles to find better performers lying in the crossover region in the 
composition–temperature phase diagram between the ferroelectric phase 
and relaxor ferroelectric phase. Such an approach is limiting for multidopant 
solid solutions and motivates the use of two data-driven machine learning and 
design strategies with a feedback loop to experiments. Strategy I considers 
learning and property prediction on all the compounds, and strategy II 
learns to preselect compounds in the crossover region on which prediction 
is carried out. By performing only two active learning loops via strategy II, 
the compound (Ba0.86Ca0.14)(Ti0.79Zr0.11Hf0.10)O3 is synthesized with the 
largest energy storage density ≈73 mJ cm−3 at a field of 20 kV cm−1, and an 
insight into the relative performance of the strategies using varying levels of 
knowledge is provided.

Materials Informatics

© 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, 
Weinheim. This is an open access article under the terms of the Creative 
Commons Attribution License, which permits use, distribution and repro-
duction in any medium, provided the original work is properly cited.

1. Introduction

A key challenge in developing better materials is the size 
of the space to be searched for the optimal chemistries and/
or processing conditions. The number of experimentally syn-
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physics input to control the search space and difficulty of the 
task to be performed.

We will focus on the problem of finding compounds with 
better dielectric energy storage density from as few experi-
ments as possible from a given training data in the easily syn-
thesized BaTiO3-based ceramics. Dielectrics capable of storing 
and releasing charges are the essential elements in modern 
electronics and electrical applications such as hybrid electric 
vehicles, portable electronic devices as well as power pulse 
devices because of their high power densities owing to the 
much faster charge–discharge speed than the electrochemical 
counterparts.[25–28] Studies of energy storage in devices have 
largely focused on performance at high electric fields aimed 
at increasing breakdown dielectric strengths.[25] For example, 
polymer-based dielectrics and thin films have attracted much 
interest in achieving superior energy storage density at very 
high electric fields where the break down field Eb can reach 
6000 kV cm−1 or more.[29,30] The increase in applied electric field, 
however, is challenging to the supporting insulation system in 
the device. It often limits the applications using miniaturized 
components as well as portable or wearable electronic devices 
demanding high level of integration. Therefore, it is desirable 
to search for energy storage materials at relatively small electric 
field strengths with manageable larger energy storage density. 
For example, Gao et al. synthesized Ba(Ti0.895Sn0.105)O3 with 
an energy storage density of ≈55 mJ cm−3 at 20 kV cm−1 based 
on operating in the region of tricritical behavior in the phase 
diagram. This exceeds most of the ferroelectric materials at the 
same field strength.[31,32] In the present study, we introduce 
several dopants into the BaTiO3 prototype to search for solid  
solutions with enhanced energy storage density at a field of  
20 kV cm−1. The Ba2+ is substituted by Ca2+, Sr2+, and the Ti4+ 
by Zr4+, Sn4+, and Hf4+, which gives rise to a vast search space 
of almost 9 million candidate choices as the concentration of 
each cation can be controlled to 0.01 in the synthesis process. It 
is too large for an Edisonian-based approach. Hence, our focus 
will be on finding solid-solutions with large dielectric energy 
storage density from this ≈9 million space of possible com-
pounds using machine learning to guide experiments.

We will address this problem in two ways, (A) we will use 
a physics approach and consider the phase diagram of the 
BaTiO3 family from a different perspective than considered 
previously, namely, we will define a crossover region in the 
composition–temperature phase diagram between the ferro-
electric phase and relaxor ferroelectric phase. Our hypothesis 
is that the energy storage density is enhanced in this crossover 
region in the composition-temperature diagram and use this as 
a design principle in (B). We will provide experimental results 
on BaTi1−xZrxO3, BaTi1−xHfxO3, and BaTi1−xSnxO3, to validate 
this hypothesis. (B) We will use two data-driven ML strate-
gies. Strategy I requires us to search across a relatively large 
search space exceeding 9 million possible compounds. We will 
use regression to build a surrogate model and then perform 
experimental design iteratively to make the best selections for 
synthesis. Strategy II will constrain the initial search space by 
using input from (A) to search only within a subclass of com-
pounds in the crossover region to increase the probability of 
finding those compounds likely to lead to enhanced properties. 
We will do this by first using classification learning to predict 

compounds belonging to this subclass only, and then perform 
regression and experimental design on these compounds to 
predict the one to consider next for synthesis. We compare in 
this work the performance of the different strategies. We will 
show that formulating the materials design question appropri-
ately, as in strategy II, not only minimizes the number of exper-
iments required (two) to find compounds with better energy 
storage density than the best in our training data, but also 
leads to compounds with even better energy storage density 
compared to the ML strategy I or the approach of (A). The best 
compound (Ba0.86Ca0.14)(Ti0.79Zr0.11Hf0.10)O3 we have found in 
this work shows superior energy storage density ≈73 mJ cm−3 
at a field of 20 kV cm−1, particularly accompanied with excellent 
energy storage efficiency (≈90%). This exceeds the performance 
of most of the ferroelectric materials known today at the same 
field strength.

2. Results

Physics Insights from the Phase Diagram: In general, the energy 
storage density Ure of ferroelectrics (shaded area of the polariza-
tion–electric field curves in Figure 1a) is given by dre

r

max

U E P
P

P

∫= ,  
where Pmax is the maximum polarization and Pr is the rem-
nant polarization.[33] Therefore, Ure is strongly dependent on Pr, 
Pmax, and E, where the maximum of E is limited by the dielec-
tric breakdown strength (Eb). To improve Ure, a low Pr and a 
high Pmax can potentially be realized by chemically modification 
and designed by utilizing the phase diagram of ferroelectrics

A schematic phase diagram showing how the Ure is influ-
enced by varying the dopant content is shown in Figure 1a. As 
it possesses several symmetry allowed degenerate polarization 
states separated by large energy barriers, a long-range ordered 
ferroelectric exhibits a square polarization–electric field (P–E) 
loop.[34] Thus even though the Pmax is large, a large Pr is also 
retained, leading to low Ure and efficiency. Inserting more point 
defects into a normal ferroelectric can generate an abnormal dis-
ordered polarization state, usually referred to as the relaxor fer-
roelectric state.[35–37] In contrast to the large ordered domains of 
micrometer size in normal ferroelectrics, the microstructure of 
relaxors is characterized by polar nanoregions (PNR) embedded 
in a paraelectric matrix.[35] The state can be “kinetically frozen” 
with only short-range order and its response to electric stimuli 
is similar to linear dielectrics, that is, small Pr and Pmax, leading 
to a low Ure.[38,39] However, in the compositional crossover 
region between normal ferroelectrics and relaxor ferroelectrics, 
the state is still disordered but not fully frozen. This affords an 
opportunity to be induced into long-range ordered state with 
large Pmax and to recover the initial disordered polarization 
state on removal of the external stimuli (a small Pr).[38,39] Thus, 
the compositions in the crossover region potentially possess a 
fairly large Pmax and small Pr. Therefore our design recipe, after 
building a phase diagram containing both normal and relaxor 
ferroelectrics, is to select compositions in the crossover region 
where the Ure is expected to be optimized.

Accordingly, we synthesized and established phase diagrams 
for three different systems, BaTi1−xZrxO3, BaTi1−xHfxO3, and 
BaTi1−xSnxO3. These systems are representative ferroelec-
trics and have been intensely investigated previously. The top 
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panels of Figure 1b–d show typical permittivity versus tem-
perature (ε–T) curves at various frequencies for the three sys-
tems, respectively. A sharp transition permittivity peak without 
frequency dispersion characterizes the normal ferroelectric at 
low dopant concentration and a smeared permittivity peak with 
frequency dispersion is the principal feature of the relaxor fer-
roelectric at high dopant concentration. The further identifica-
tion of the phase transition type using modified Curie–Weiss 
law can be seen in Figure S1 (Supporting Information). The 
middle panels of Figure 1b–d give the composition–tempera-

ture phase diagrams, which agree well with those reported in 
the literatures,[40–42] with three distinct composition regions 
for normal ferroelectrics, crossover, and relaxor ferroelectrics. 
The concentration dependence of the Ure calculated from P–E 
curves (Figure S1, Supporting Information) is plotted in the 
bottom panels of Figure 1b–d corresponding to each phase dia-
gram. A peak value indeed appears in all three systems at the 
crossover region.

The Ure obtained in the above simple systems (≈55 mJ cm−3  
at the crossover composition) is not particularly large, and 
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Figure 1. Schema shows Ure of different regions and validation in three simple systems. a) Schema from physical perspective shows that compounds 
located in the crossover region have higher Ure, b–d) three simple systems, BaTi1−xZrxO3, BaTi1−xHfxO3, and BaTi1−xSnxO3 show compounds in the 
crossover region indeed have higher Ure compared to relaxors and ferroelctrics, as highlighted by the shaded area. Moreover, our composition-temper-
ature phase diagrams (red triangles) show a good agreement compared to studies in the literatures (squares), frequency dependence of permittivity 
of typical samples are also presented.
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chemical modification to both A site and B site of the perov-
skite structure should be performed to further optimize the 
Ure. Although this design approach with insights from the 
phase diagram works well for the above systems, it is rather 
difficult to apply this recipe to multicomponent compounds, 
for example, (Ba1−x−yCaxSry)(Ti1−u−v−wZruSnvHfw)O3 as the com-
bination of different ions results in numerous possible pseu-
dobinary phase diagrams. We constrain the mole fractions x, 
y, u, v, and w by 1 − x − y ≥ 0.6, x ≤ 0.4, y ≤ 0.3, 1 − u − v − w 
≥ 0.6, u ≤ 0.3, v ≤ 0.3, and w ≤ 0.3, respectively. The bounds 
are set by considering the solubility of the dopants and ensures 
the transition temperature is not too low to be detected. With 
an unexplored space of ≈9 million possible compounds, we will 
use two ML and global optimization strategies within an itera-
tive feedback loop to search for materials with enhanced Ure.

Strategy I: Searching from All Compounds in Phase Diagram: 
We employed a purely data-driven strategy with a training data 
set of 182 compounds and a search space of ≈9 million possible 
compounds. The training data set was obtained from the same 
lab using traditional solid-solid reaction. The data file can be 
found in Supporting Information. The inner loop in Figure 2 
schematically shows the feedback loop, including key ingredi-
ents: i) a training data ≈0.002% of the whole search space, each 
with the targeted Ure measured; ii) a ML model that uses the 
training data to learn the relationship between features, xi and 
property, Ure, i.e., Ure = f(xi); iii) the trained model is applied to 
the search space of ≈9 million unexplored compositions to pre-
dict Ure with associated model uncertainty; iv) utility function 

used to maximize the expected utility aids in the selection of 
the next candidate material; and v) feedback from experiments 
with subsequent improvement of the ML model.

Each compound is described in terms of features, xi, which 
include four different attributes. The change of Curie temper-
ature due to the addition of dopants to the BaTiO3 matrix is 
important, which is abbreviated as NCT. If the doped element 
decreases the Curie temperature, NCT is assigned a value of 
−1; if the doped element increases the Curie temperature, NCT 
is assigned +1; and if the doped element has no effect on the 
Curie temperature, NCT is assigned a value of 0. For example, 
the addition of Zr element into the BaTiO3 matrix will decrease 
the Curie temperature, thus NCT for Zr is −1. The “tolerance 
factor” (t), the ionic displacement of B-site elements (DB), and 
the ratio of the element polarizability of A-site and B-site ele-
ments (P). The feature for a given compound is then calculated 
as the weighted mean using the mole fraction of each element. 
The detailed definition and selection of features are given in 
Section S2 (Supporting Information). The property Ure was 
obtained by integrating the P–E loop measured under an elec-
tric field of 20 kV cm−1 for each sample in the training data.

We built and compared 4 different ML models to estimate 
Ure = f(NCT, t, DB, P) and selected the support vector machine 
with a radial-based kernel function (SVR.rbf) based on their 
mean squared and cross-validation errors. The details of 
model selection are given in Section S3 (Supporting Informa-
tion). The performance of this SVR.rbf model comparing the 
predicted mean values and experimental measured values is 
plotted in Figure 3a. We used cross-validation to find the hyper-
parameters for a robust SVR.rbf model, balancing the trade-off 
between overfitting and under-fitting. The mean values μ of the 
predicted property together with the associated standard devia-
tion σ are obtained by the “bootstrap” method of statistics by 
randomly sampling 1000 times with repeats from the training 
data of 182 compounds to build 1000 models. Thus the SVR.rbf 
model predicts the value of Ure of unexplored compounds and 
the associated uncertainties.

Choosing proper candidates for next experiment is then 
crucial to efficiently search for the materials with better Ure. 
We used efficient global optimization (EGO), which bal-
ances the exploration and exploitation aspects of the search 
to select next candidates.[13,22,43] EGO evaluates the “expected 
improvement” (EI), a measure of the possible improvement 
with respect to the best performer in the training data. Also, 
EI [max( ,0)] ( ) ( ) d [ ( ) ( )]* *

*
E y y P y x y z z z�∫µ µ σ φ= − = − ′ = + Φ

µ

∞
, where y − μ* 

is the possible improvement for certain y or energy density, 
P(y∣x′) is the distribution of the predicted y and is assumed to 
be normal, and z = (μ − μ*)/σ, where μ* is the maximum value 
of the energy density (Ure) in the training data, μ and σ are the 
predicted value of Ure and the associated uncertainty, respec-
tively. The φ(z) and Φ(z) are the standard normal density and 
distribution functions, respectively. Maximizing EI provides 
an optimal means to balance trade-off between exploitation  
(σ → 0) and exploration (σ → ∞).[22] This selector considers 
both the predicted value and its associated uncertainty to 
choose the next experiment, in contrast to merely choosing the 
largest predicted value. As we can synthesize four compounds 
at a time, we predicted four compounds, which were synthe-
sized and characterized and the training data augmented.

Adv. Sci. 2019, 6, 1901395

Figure 2. Two closed feedback loops. Inner loop with dashed arrows 
includes only regression ML model used in strategy I. Outer loop com-
bines classification with regression ML models and will be used in 
strategy II. In each iteration, experimental results were accumulated into 
the training data and new models were trained and used for the next 
iteration.
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We iterated the feedback loop eight times, and the measured 
versus predicted Ure with uncertainties are plotted on the top 
of the initially trained ML model in Figure 3a with solid points. 
Figure 3b shows the measured Ure of newly made 32 com-
pounds (listed in Table S2 in the Supporting Information) 
as a function of 8 iterations. The best Ure in each iteration 
decreases first and increases until the peak value shown in the 
6th iteration, followed by another decrease. The behavior of 
the predicted values as a function of iterations can be found in 
Figure S9 (Supporting Information), which presents a similar 
tendency to that in Figure 3b. The three best compounds were 
obtained in the 6th iteration after synthesizing and character-
izing 24 compounds. The best Ure has a value of 69.5 mJ cm−3,  
which is about 8% higher than that of the best one in the 
training data.

To validate the assumption that the best compound we 
discovered is located within the crossover region, we experi-
mentally established a composition-temperature pseudo-
binary phase diagram by varying the Sn4+ content with fixed 
A-site cations in the best performing compound, (Ba0.79Ca0.21)
(Ti0.86Sn0.14)O3. The phase diagram of (Ba0.79Ca0.21)(Ti1−xSnx)
O3 is shown in Figure 3c. The ε–T curves of various Sn4+ com-
pounds (Figure S10, Supporting Information) demonstrate that 
the best compound from strategy I is located in the crossover 
region. Typical curves are shown in the top panel of Figure 3c 
and the crossover region is highlighted by the shadow. The 
Ure obtained from P–E curves (Figure S10, Supporting Infor-
mation) is plotted as a function of Sn4+ content in the bottom 
panel. The best compound (Ba0.79Ca0.21)(Ti0.86Sn0.14)O3 outper-
forms the surrounding compositions, indicating at least one 
local maximum of the search space.

Strategy II: Searching from Preselected Compounds in Crossover 
Region: This strategy only consider the compounds that fall 
within the crossover regions. As these compounds are likely the 
extrema of Ure, we anticipate that the design optimization will 
be more favorable and less exploratory in terms of number of 
iterations required. The strategy is schematically shown by the 
outer loop in Figure 2. A key difference compared to strategy I 
is that a binary classification model is first used to down select 
crossover region compounds. It is noted that a multiclass clas-
sifier to “ferroelectric”, “relaxor”, and “crossover” is an alterna-
tive way to predict the “crossover” compositions.

The training data for classification includes 183 compounds 
labeled as either ferroelectric or relaxor (Supporting Informa-
tion). The training data thus has 56 samples labeled relaxor and 
127 samples labeled ferroelectric. Compounds in the crossover 
region show a little frequency dispersion in the dielectric spec-
trum and therefore we labeled them as relaxors. we used the 
mole fraction of each ion as feature to build the classifier, which 
was a support vector machine with a radial-based kernel func-
tion. We calculated the receiver operating characteristic (ROC) 
curve that uses the probability of prediction to evaluate the per-
formance of a binary classification model. Every point on the 
line shows how the classifier performs at a given threshold.[44] 
The initial labeled 183 compounds were randomly separated 
into a training set (140 compounds) and a test set (43 com-
pounds). The same algorithm was used to train a model in the 
training set and then validated on the test set. Figure 4a shows 
the ROC curve based on the test set, where the red dashed 
line represents the random guess. The area under the ROC 
curve is 0.94 which ensures a robust classification model. We 
also evaluated the performance of the classifier by considering 

Adv. Sci. 2019, 6, 1901395

Figure 3. The regression model performance and the new compounds found in strategy I. a) Predicted values obtained from ML model as a function of 
measured values, error bar is from bootstrap sampling. b) Measured values as a function of iteration #, red line represents the best Ure in the training 
data, best material is found in the 6th iteration. c) Typical permittivity spectra from which the composition–temperature phase diagram of (Ba0.79Ca0.21)
(Ti1−xSnx)O3 is established. Crossover region is shadowed and shows better Ure.
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training, cross-validation and test errors (details can be seen 
in Figure S11 in the Supporting Information). The misclas-
sification rate for each compound in the training data is also 
calculated using the bootstrap method and listed in Table S3 
(Supporting Information).

We applied the classifier to the unexplored space of ≈9 million 
compounds, with each compound assigned as either ferroelec-
tric or relaxor. The compounds on the phase boundary between 
ferroelectric and relaxor were determined by monitoring their 
nearest neighbors. For each compound in the unexplored space, 
if at least one nearest neighbor is labeled differently from the 
others, this compound is considered to be on the boundary. To 
clarify, Figure 4b shows a 2D phase diagram where the axes 
are the features monitoring the composition of Zr and Ca. The 
boundary (or the margin) clearly distinguishes ferroelectrics 
from relaxors. Given that we have a crossover region rather than 
just a boundary between the ferroelectrics and relaxors, we incor-
porate compounds within the crossover region by considering 
compounds up to four neighbors or steps into the relaxor region. 
As a 5D plot is challenging to visualize, a plot of the boundary 
between normal ferroelectrics and relaxors in three dimensions 
is shown in Figure 4c, in terms of the Zr, Ca, and Sr compo-
sitions with the relaxors above separated from the ferroelectrics 
below by the compounds on the boundary. The crossover region 
includes ≈690 000 compounds in total and is much smaller com-
pared to the whole unexplored space of ≈9 million compounds. 
Most importantly, the compounds in this smaller search space 
have the most promising potential to show enhanced Ure.

The same regression model based on 182 compounds 
(≈0.025% of the smaller unexplored space) trained in strategy 
I was employed to make predictions on this smaller search 
space. We again used expected improvement as the selection 
criterion, as shown in Figure 2. After synthesis and characteri-
zation, the experimental results were added to the training data 
for both classification and regression, and subsequent itera-
tion proceeds accordingly. The outer loop in Figure 2 iterates 
twice and 8 new compounds were synthesized and character-
ized. The corresponding measured Ure (calculated from P–E 
curves in Figure S12 in the Supporting Information) are listed 
in Table 1. Five samples show comparable or higher Ure than 

Adv. Sci. 2019, 6, 1901395

Table 1. The 8 new compounds synthesized in strategy II (five of 
these (in bold) have a comparable or higher Ure than the best found in 
strategy I).

Iteration # Ba Ca Sr Ti Zr Sn Hf Ure

1 0.97 0.03 0.00 0.86 0.00 0.14 0.00 52.1

1 0.61 0.09 0.30 0.90 0.10 0.00 0.00 41.4

1 0.81 0.19 0.00 0.84 0.00 0.16 0.00 68.2

1 0.87 0.13 0.00 0.79 0.11 0.00 0.10 71.5

2 0.86 0.14 0.00 0.79 0.05 0.00 0.16 70.4

2 0.80 0.20 0.00 0.83 0.00 0.17 0.00 60.4

2 0.87 0.13 0.00 0.79 0.10 0.00 0.11 72.3

2 0.86 0.14 0.00 0.79 0.11 0.00 0.10 72.8

Figure 4. Performance of the classification model and the new 8 compounds synthesized in strategy II. a) ROC curve to validate our classifier. b) A 
projection of the boundary to a 2D phase diagram featured by elements Zr and Ca. c) A 3D phase diagram to show the boundary between normal fer-
roelectrics and relaxors (includes crossover region) predicted from classification model; above the boundary are compounds in crossover and relaxor 
region, below are normal ferroelectrics. d) Measured values as a function of number of iterations; inset shows that the predicted values change with 
iterations. Red and blue dashed lines indicate the best Ure found in strategy I and in training data, respectively.
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the best value found in strategy I (red dashed line), as shown in 
Figure 4d. The best compound (Ba0.86Ca0.14)(Ti0.79Zr0.11Hf0.10)
O3 found in strategy II shows a Ure of ≈73 mJ cm−3, improved 
by 14% compared to the best in the training data. Inset plot 
indicates that predicted values versus iterations show a similar 
tendency to the measured values. The ε–T curves in Figure S13  
(Supporting Information) show a degree of diffusion, con-
firming that all 5 new compounds are likely located in the 
crossover region. Thus, invoking the physics associated with 
the crossover region between normal and relaxor ferroelectrics 
has allowed us to effectively reduce the search space to signifi-
cantly accelerate finding high Ure compounds.

3. Discussion and Summary

To glean some insights into the two strategies, Figure 5a shows 
the initial distribution of predictions of the virtual space (≈9 
million) for strategy I, where the predictions vary from 5 to 
63 mJ cm−3 with a peak located at a Ure around 30 mJ cm−3. 
The initial distribution of predictions in the virtual space for 
≈0.7 million compounds in strategy II shifts to higher values, 
as shown in Figure 5b. All the predictions are larger than 
30 mJ cm−3 and the range now is from 30 to 63 mJ cm−3, in 
particular, the peak is located at a Ure around 39 mJ cm−3. 
Thus, compared to strategy I that possesses many local extrema 

as shown in Figure 5c, strategy II effectively preselects a subset 
of compounds (using classification model) from the total space 
that are likely to be favored, as shown in Figure 5d. This will 
avoid excess exploration around local extrema.

In summary, we proposed a guiding principle which finds 
better energy storage properties in the crossover region of the 
composition–temperature phase diagram between the ferro-
electric phase and relaxor ferroelectric phase. As a prior infor-
mation of phase diagram is needed, this approach is limiting 
in complex multicomponent systems. We thus have compared 
the performance of two ML strategies to find multicomponent 
solid-solutions with enhanced energy storage density, Ure in 
BaTiO3-based ceramics using experimental data. Strategy I 
applied ML model and adaptive design directly to a huge vir-
tual space of ≈9 million compounds. After 6 iterations, com-
positions were found that improved the targeted property by 
8% compared to the best in the training data. By using physical 
insights from the composition-temperature phase diagram that 
allowed only a subclass of compounds to be considered in the 
virtual space, strategy II utilized ML in the form of classifica-
tion and regression models, as well as adaptive design. The 
search therefore becomes far more efficient as only 2 itera-
tions were needed to obtain 5 compounds with comparable 
or higher Ure than the best found in strategy I. The best com-
pound (Ba0.86Ca0.14)(Ti0.79Zr0.11Hf0.10)O3 found in the reduced 
search space (with 5 easy to process elements) has a Ure  

Figure 5. Distribution of predictions of the virtual space used in strategy I and strategy II. a) The distribution of predicted Ure of virtual space in strategy 
I, inset is the amplification of the part with large predicted values. b) The distribution of predicted Ure of virtual space in strategy II, inset is the ampli-
fication of the part with large predicted values. c) Schema to show a complex landscape with many local extrema. d) Major local extrema are removed 
from the virtual space using physical understanding, there is a greater probability of finding large Ure in this landscape.
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of ≈73 mJ cm−3 at 20 kV cm−1, 14% better than the best in the 
training data. The relative performance of the two strategies 
is revealed from a statistical perspective. We envision the pro-
posed framework can be extended to other complex systems to 
accelerate the searching process of new materials.

4. Experimental Section
Experimental: (Ba1−x−yCaxSry)(Ti1−u−v−wZruSnvHfw)O3 ceramics were 

fabricated by a conventional solid–solid reaction method with the starting 
materials of BaCO3 (99.8%), CaCO3 (99.9%), SrCO3 (99.9%), BaZrO3 
(99.9%), SnO2 (99.9%), HfO2(99.8%), and TiO2 (99.6%). The calcination 
was performed at 1350 °C for 3 h and sintering was done at 1450 °C for 
3 h in air. All the samples were synthesized under the same conditions to 
reduce the dependence of targeted property on processing. The sintered 
samples for ferroelectric and dielectric measurements were polished to 
obtain parallel sides and coated with silver electrodes. The polarization–
electric field (P–E) loops were identified by a ferroelectric workstation at 
10 Hz and frequency dependence of permittivity on temperature were 
measured using a HIOKI 3532-50 LCR meter, all with disk-shaped samples.

Machine Learning Models: Four ML regression models are employed 
in this study, support vector machine with a radial-based kernel function, 
ridge regression with a radial-based kernel function, gradient boosting 
decision tree, and random forest. The former two models use tenfolds 
cross-validation to choose the best hyperparameters. In the first three 
models, the predictions and uncertainties are obtained from 1000 
models built on 1000 resampling training data with repeats. For the 
random forest model, 500 000 trees are trained based on the resampling 
method with repeats. In terms of the classification model, support 
vector machine with a radial-based kernel function is used, and leave-
one-out cross-validation is used to choose the best hyperparameters. 
The support vector machine with a radial-based kernel function for 
regression and classification was implemented in the e1017 package 
within the RSTUDIO environment.
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